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Abstract. Exact analytical expressions for the dielectric and, for the first time, for the Kerr
functions are explicitly calculated in both relaxation and steady-state regimes, by solving the
generalized Licuville equation (in the presence of large collisions) for the rotational motion of
a linzar rigid rotor in 3p. The response functions thus obtained generalize and extend all the
results recently published on the topic. The Debye-Smoluchowski or Rocard diffusion models
are recovered. In particular, the dielectric response is in full agreement with the analysis of
Sack (1957 Proc. Phys. Soc. B 70 402, 414). Nevertheless, we draw the reader’s attention to
the misprint in the susceptibility formula given by Sack in his equation (2.35).

1. Introduction

The dynamical dielectric reiaxation and Kerr electric birefringence, considered here as
dynamical properties of an intrinsically isotropic fluid, are of great interest in order to
understand the microscopic behaviour of the polar molecules constituting this fluid. These
properties are related to the rotational motion of the polar molecules under the action of an
electric stress.

The experimental dielectric properties of a fluid at time ¢ can be determined by means of
the after-effect function x (¢) for the dielectric relaxation. This function measures the electric
polarization of the fluid and depends directly on the orientation of the polar molecules with
respect to the axes of polarization [1-6].

The Kerr electric birefringence results from the anisotropy of the fluid induced by
the electric field. The birefringence properties can be determined by means of the Kerr
function ¢(¢), which is related to the difference between the refractive indexes parallel
and perpendicular to the axis of polarization. This function also depenrds directly on the
preferential orientation of the polar molecules [1-6].

In this paper, we present calculations of the functions x (2} and ¢(¢) in the case of a
system of rigid linear polar molecules rotating about fixed centres and interacting with the
surrounding via a mechanism of large collisions. The mechanism of large collisicns means
that in the process of interaction the orientations of the molecules remain unaffected, but
the velocity distribution after impact is Maxwellian regardless of the initial velocity [1].

It is also assumed that:

(a) The collisions can be treated as instantanecus compared with the time scale
characterizing the evolution of the rotating molecules.

(b) There is no correlation between successive collisions.
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Finally, the rotating molecules possess a permanent and induced dipole moment along
their axes, interacting with the electric field. Hyperpolarizabilities are ignored in the present
case.

The paper is organized as follows. Section 2 deals with general theoretical
considerations. In section 3, we determine the relaxation of the functions x(¢) and ¢(r)
generated by a sudden removal of a DC eleciric field, while in section 4 these functions are
studied in the steady-state regime when a cosine alternating electric field is applied. We
restrict our calculations up to second order in the electric field.

2. General theoretical considerations

The generalized Liouville equation (in the presence of large collisions) for the probability
density function W(a, B, ®., wg, ) in the configuration angular velocity space associated
with the rotational motion of a linear rigid rotor can be written as [1-3]

8  wy 9 3 8 a\ 1ave) 8
. v t - o =TT an a. W ? 1 r 1t
[az+sm,saa+“’”aﬁ+°° ‘B( s “’“"’*’awa) I 98 awﬁ] @ B, ey 0p.1)
I {0} + v}
- _B[W(as ﬁ! wcnwﬁv I)_Z:rrkT exp(_ T )
o0 o0
xf dw;f dwa(a,ﬁ,w;.wfg,t)]. 4}
—o0 —00

Here « and B are, respectively, the azimuthal and polar angles of the molecule with respect
to the fixed direction of an applied electric field along the polar axis. w, and wg are the
corresponding angular velocities about any axis through the origin perpendicular to the line
of symmetry of the molecule. 7 is the moment of inertia of the rotor about the line of the
principal axis through the origin perpendicular to the axis of symmetry. The moment of
inertia about this principal axis of symmetry is assumed to be zero. B = {/[ is the mean
collision rate, interpreted as the ratio of the friction coefficient ¢ to the moment of inertia
I, similar to the case of the Brownian motion [3-6). % is the Boltzmann constant, T the
absolute temperature, and V the potential energy.

Except for the time derivative term, the left-hand side describes the free motion of the
rotor and its interaction with the potential energy, while the right-hand side represents the
influence of large collisions with the surroundings.

Our aim is essentially to calculate the after-effect function, which amounts to calculating
the autocorrelation function of the second-order Legendre polynomial Pi(cosf) =
2(3cos? g — 1). The Kerr function may be calculated from the equation [3-6)

Jo sinBdp fo dee [ de, [, dwg Py(cos B) W

PO = fo si nﬁdﬁj& do [ dwe [%0 dwp W @
The after-effect function for the dielectric relaxation is defined as [1-6]
o0 = fy sinBdg j;) do %2 dwy [53 dwg pcos BW . ®)
ST sinpdB JT da [ dwy [ dwg W
iIn our analysis, we consider the potential energy [3-6]
V = ~wE(t) cos § — (@) — L) E@eos’s | EQ @)

2 +T2
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where E(¢) is the applied electric field, p is the permanent dipole moment along the rotor

axis of symmetry, and oy and @ are the polarizabilities causing the induced moment of

the molecule, respectively paralle] and perpendicular to the axis of symmetry of the rotor,
The solution of the generalized Liouville equation (1) can be written [1-6] as

172
= 3 ikT exp(— x)[l-[—Z(x )+ X1 (x,)cos B+ Xa(x, t)( ) wg sin B

i 1\
+Y(x, ) Pa(cos ) + Yalx, t)ﬁ(ﬁ) wﬁle (cos B)

1 /1 a)g
+Y3(x.t)ﬁ(ﬁ - E)Pz (COSﬁ)] (5)
where
ok +o?)
= _ﬁf_ﬁ_ (6)
and
P}(cos B) = 3sinBcos B P2(cos B) = 3sin® B N

are the associated second-order Legendre polynomials. To compute x(t) and ¢(z) up to
second order in the electric field, we assume that X {x, z} and X,(x, ) depend only linearly
on E(2) and that ¥ (x, ), ¥a{x, ¢), Y3(x, t) and Z(x, ¢} depend only quadratically on E(t).
On substituting (5) in equation (1) together with (4), and equating the coefficients of the
various Legendre functions to first and second order in the electric field, we note that, up
to second order, we obtain the following matrix systems:

D X=T (®)
_BYX = Uy )
D;Z =Vx (10)
where
-};%-{-l—fo"'mdx’e‘* S2Zvx
D, = | (11)

~y2y et
Xy

X= ( ) (12)
X2

0
kT

11— fdve ¥ 0
D, - B2 SRR, 19
0 -2y i+l
)¢
Y= | n (15)
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_M?EEE(E) (x%-{- (1-x)) X,
\/_wu—m)—ﬂ+\/_1£@l (- x (16)

[Fi

_ 13 A
Dz_(33t+1— A dx'e ) (an
,uE(t) k]
V= (“’3 2 { (- )] a8)
The dimensionless parameter y is
kT
Using (5), we can perform the integrals in (3) and (2) to give
7} oo
x = 3 dx e X (x, 1) (20)
0
1 +0
) = 3 dxe Y (x, ). (21}
0

Thus, the evolution of x (¢} and ¢(t) will be completely determined provided that the initial
condition for W and the explicit expression of E(t) are given.

3, Dielectric and Kerr relaxation functions

We consider an electric field defined as
Ey t<0

E@) = (22)
) 20

where Ej is a constant field. For # < 0, we consider that the system is in equilibrium. The
distribution function, when we take into account second-order terms in the electric field, is
then

Iw? + w? 2\ g2
= Sn'ikT exp(— @ wﬁ)) [1+LCOSﬁ+(QE—WL+ a ) Eo P;(cosﬂ):l

2T kT 34T
(23)
The corresponding values for the coefficients at ¢ < 0 are
#Eq
0 24
Xi(x,t <O =22 4)
and
2 2
_ AR S
Nixt<0= (az" o+ JcT)3kT . (25)

For t > 0, we apply to the above matrix equations Laplace transforms defined by

f& =L(Ff @) = j; dee ™ £ (). (26)
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Taking account of the initial conditions and of (22), and defining the new dimensionless
Laplace variable

s =

5
5 27)

we obtain the two independent systems
@+ V2rx ) (X TeXdr' + 543 28)
-J2y '+ 1) X, 0

and

'+ 1) 6y¥x 0 2
/6y ('+1) Iyx A
0 -2y '+ 1) 1
0 © =% §dx' + (au—a,]_—i- )5‘}-
- 0 : 29)
0

In what follows, all quantities having the superscript ' are functions dependent on x’,

3.1, Dielectric relaxation function

We can eliminate X, in the system (28) to have an equation in X, only

Y oo —x! o ! IFLED
(s +1+4+ !+1)X1 j‘; e X dx +B T (30)

Solving the last expression in X; and multiplying both sides by e~*', we integrate over x
to give

+o0 . g1 [ 00 a—x' F dx’ + 1af
—x —xv0 1 B kT
= dx.
.[n e X, dx 5y ./n e o %L’ @3Bn
Carrying out the integral over x on the right-hand side of (31) and using (20), we get
) S+1 (4 DE 1) n, LB E
6 = 5 P, Bl i+ 357 (32)
where we used the exponential integral defined [7] as
+00 a—H
Ex@) = f Sdu gl <. 33)
F4

Thus, we obtain
(1+s)exp if—’f-E (M) 1B
27— + Derp G, (G2) B

X = (34)
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By using the identity [7]
1

¢Ei(z) = 1 - (35)
z+ 7
1+
z+ 2
I+ 2 3
4+
1+ &
Z4
we can also express the result (34) in an appropriate continued fraction form
Lg
won B %T
X = ) 2y : (36)
s+ 5
Sf + 1 + y
' 4y
sS+1+
' 4y
sS+1+ 3
S +1+ %
'
1+ —
s +14+ P
The inverse Laplace transform of (36) is, up to fourth order in the y expansion,
2
_ M E —2e—BY Lo
x@®) = 3T {1 + [ 2¢780 1.2~ 2(B1) |y

+[4(Bt) e~B) + 2(B1)* — 4(B1) +2( B,)ze—wo] Y2

— 32(Br)e~ BN

3
+[4 (B1)? — 406 _ g (Br) — (iz)

3 (B
—16(Br)%e~(8) — (Bry'e™®) 440 — M}ys

3

o+ [—64 (Br) + 288 (BNe 2 4 16 (Br)? + 224 ™50 4 56 (Br)?e—(B)

4 3
+2(§I) + 160 (Bf)2e~B) — @ — 224
38 (Bt)’e~B) 13 (Br)be~ (89 4B |4
5 + 25 + 14 (Bt)’e Y
o0, »

Figure 1 shows the after-effect function for the dielectric relaxation x(7)/x{0) versus the
reduced time T = B¢ for various terms of the expansion in power of y. It indicates that a
sujtable estimation of ¥ (t), correct for short time, has to contain at least the term 3.

We note that the first convergent of the continued fraction (36) leads to the same result as
the dielectric response deduced from the Fokker-Planck~Kramers (FPK) equation describing
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Figure 1. Time evolution of the normalized after-effect function for the dielectric relaxation
x(t)/ (0} for y = 0.05 versus the reduced time ¥ = Bf. The numbers (1), (2), (3) and (4)
represent the degree of the polynomial expansion in y taken into account for the expression of

x>

the Brownian rotational motion of a rigid linear rod, when a bC field is removed [5,6].
Indeed, defining the reduced susceptibility

X (s
=% (38)
pei 7(0)
we recover for the first convergent of (36) the result recently deduced in [5, 6], namely
Wy = 25Dy
%) 24542y (39)

The superseript (1} stands for the order of convergece. The larger convergents of (36) give
different responses compared with the FPK solution [5,6]. Replacing s’ by iw’, we can split
(34) into its real and imaginary parts

xe(@) = x; (@) — ix; (@) (40)

corresponding to the usual susceptibility and the loss factor, respectively. This gives for
the first convergent

KO = 4y 1)

f W't~ 4oy + w2 +4y?

21 +@? - 29)0’

LI =

%) W — 4oy + w44y “2)
For I — 0 {corresponding to B — o0), since the Debye relaxation time
1 9
® =%~ AT @
is finite, the first convergent (39) gives

@5y = Lim v s) =

x2(s) 81_111;0 x5 TTom (44)

when we retake the usual Laplace variable s. The relation (44) corresponds to the Debye—
Smoluchowski approximation; that is, the limit of the inertial response for very high friction
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Figurs 2. Normalized dispersion plots of the real and imaginary components of the complex
susceptibility, x/(w) and x/(w), versus the reduced time v'pw for y = 0.05 obtained from
equation (1), (NH), and the modified Smoluchowski equation, (MS), and for ¥ = 1 obtained
from equation (1), (NH1). (D) refers to the case of the Debye-Smoluchowski dispersion.
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Figure 3. Plots of the imaginary part x,"(w) versus the real part x/(w) of the complex
suseeptibility for ¥ = 0.05 obtained from equation (1} (NH) and the modified Smoluchowski
equation (MS), and for y = 1 cbtained from equation (1) (NHI). (D) refers to the Debye~
Smoluchowski spectrum.

and vanishingly small inertia. The Debye-Smoluchowski approximation is better known in
the harmonic form [8), i.e. putting s = iw

W) = ———. (45)
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This result can be compared with the case of spherical molecules with their polar axis
rotating in one plane [8]

1) = (46)

1+ 2wt

Note that the first convergent susceptibility components (equations (41) and (42)) are nothing
but the responses given by the modified Smoluchowski equation [4,9, 10].

Figure 2 shows how the modified Smoluchowski equation, represented by (MS), versus
the reduced time T'pw (t'p = 21p = ¢/kT) overestimates the inertial effects, compared
with the more appropriate generalized Liouville equation (1). Indeed, for vanishing inertial
moment (¥ ~ 0.05), the spectrum given by the exact solution {equaticn (34))}, represented
by (NH} in figure 2 coincides with the ideal Debye—Smoluchowski spectrum (D). For higher
values of the inertial moment (y ~ 1), the exact solution represented by (NHI1} shows a
very significant discrepancy with the Debye—Smoluchowski spectrum.

Figure 3 illustrates the Cole—Cole diagram x"(@) = f(x/(w)} compared with the
equivalent Debye one. For small ¥ values, all the plots (MS), (D) and (NH) have the same
trend, while for = 1 the plot (NH1) has a quite different form.

3.2, Kerr relaxation function

To calculate ¢(s'), similarly to the previous subsection, we take the inverse of the square
matrix defined in (29). This allows ¥; appearing in the left-hand side of (29) to be expressed
ag
’ 2 OO ' a0y 1 _ pt\ E}
5 [+ 1) +2Vx][o © Yldx+3(°‘!| oL+ 57 } %y an
1= - E
Syl + 1] [ S 4 x]

Multiplying (47) by ¢~* and taking the integral of the result over x with (21), we obtain

-1 ¢+ (D2 (1)
e e )

8y 8y
. 1 uz E2
1 o _ Kl 1]
X (¢(s)+ 7 (a" o) + kT) ISkT) (48)

or in a more appropriate form

[1 +3£““-';'7lﬁ exp “%'EE; (M)] ¥ (a" ~ay + %) R

- 8y TSkT
35y = , : : : (49)
4+ 1) = [1 4+ 3EHE exp (2]
By using (35), this result can also be expressed as a continued fraction
1 2y _E§
- < — 4 £y-20
¢(SI) — B(a" s 6ykT) 15kT (50)
s+ 3y %y
|'+1
T Ry T6y
s+ 14+ T3
S+1+ Y
: 24y
s+14
, 24y
§+1+4+

e
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The inverse Laplace transform of (50), valid for short time, is, up to fourth order of the
y expansion,

f) = Y B 66 ® _ 6 (B 4 6]
A s AT 70 L Y

+ [30 (Bt)?e™ (B — 72 — 12(Bt) + 18 (B1)> + 84 (Br)e P 1 72 e—(B:)]yz
+[~36 (B — 1080 (Ba)?e™(® — 36 (B1)’ + 1800 — 2016 (Brye>)
—336 (Bt)’e 3 — 57 (Br)*e™®) 1+ 216 (Br) — 1800 e-(g;)]ys

+[85536 (Bt)e™®9) 4. 43920 (Br)e () + 54 (Bt)* — 2880 (B1)

+216 (B1)® + 82656~ %) 4 14712 (B1)*e~®9 + 3510 (Bt)*e~ 59

2994 (B1)Se39 Br)be~(B7)
TcattUaanE Ji R 82556+288(Br)2]y4
+(’J(y5)) . (51)
The first convergent of the continued fraction (50) now gives
Lo — ©Y B
- oy — oL+
SOy = i ( - kT) T (52)
s" + __.._y—z}’_..
s'4+ 14 Y41
Defining
et
An(sh = Bw (53)
%o
where
2 2
- K\ Ey
$o = ( —oaL+ )ISkT (54)
we have
AR () = e 55)
¢ 'd
M + '__""_Zy_
S+1+ ‘m
Replacing s' by iw', we can split (53) into its real and imaginary parts as
Anr(&)") = An’r(ﬂ)r) - iAn”r(ﬁ)’). (56)

Figure 4 shows An',(w") versus the reduced frequency &’ for the exact solution (NH), the
Debye—-Smoluchowski case (D) and the approximate response deduced by Kalmykov and
Quinn (KQ) (and denoted by C Yw') in their work) [6].

Putting the term 2y /{s'-+2) = 0 and 5’ = e’ in (55), we recover the result of Kalmykov
and Quinn (equation (76) in [6]) and the characteristic time tpy = C0 (0)/B /3,
(o 2 (') being the notation adopted in [6]).
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Figure 4. Plots of the real parts An (') of

the complex Kem-effect relaxation function
] for y = 0.05 obtained from equation {1)

17 I (NH) and from the work of Kalmykov and

Quinn (KQ) . Note that as o' increases, all

approximations converge rapidly, except for

U B AU L T " the Debye-Smoluchowski diffusion model
0 02 04 06 03 1 1.2 4 16 refemred to as (D) on the graph,

4. Steady state of the dielectric and Kerr function for E(t) = FEy cos (wt)

The formal solutions for the coefficients can be written as

X1t} L1 Xl ()
- _ +cc (57)
Xa(2) 1 X} (w)
ity (@) + YH@)e™™)
L) | =] 3@ + i we®™) {+cc. (58)
Y3(1) 1(P(w) + Yw)e™™)
Under these conditions, the response functions take the form
Xst(t) = %Xst(w)eiw: +CC (59)
$s:(t) = $(do(®) + da(w)e™) +cC . (60)

The subscript ‘st’ stands for the steady state. Replacing the expressions (57) and (58) into
the two systems (8) and (9) and using the new dimensionless variable

o =w/B 61)
we get the algebraic system of equations
+00 1 xorl
(i +1)  +Zyx x! o e ¥ X dx' S
= {62)
-2y G+ )\ x! ~VE ’“"E"

and

1 N 3% 0 ¥?
—/6y 1 V2rx Yy
0 —f2y 1 7?

o e""Y’?dx’ ik [y 4 (1-x)]X)

= -E@-awi ‘/_ Z-1)x! (63)

Zsz%“(a—l)xé
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Qi+ 1) JByx 0 Y2
-6y Qiw+1l  JIyx || ¥ (64)
0 -JIy Qi +1) Y2

L T T
SNETOY J_ TRE-OH . )
\/_ 21

Following the procedure developed for the dlelcctric relaxation, we solve the system
(62) to recover the formula of the linear reduced susceptibility, namely

Xl (1 +10)(1 — 216% Ex(a)

Xral(@) = (0 T (+ie) — zien Ey(z)) 0
where
’E
and
1 22
1 = --———( -;;'w) . (68)

We draw the reader’s attention to the misprint in the analogous formula given by Sack in [1]
(his equation (2.35)). The exact formula was also pointed out in an earlier work by Gaiduk
and Kalmykov [2].

Using (35), we can rewrite the reduced steady-state susceptibility in a continued fraction

as
i’
Xz, st(wf) =1— Ty
i’ + 55
i +1+
. 4y
i +1+
.y 4y
iw + 14 3
o + 1+ Y 5
S e pr
(69)
which is the same as the result obtained by Sack [1]. The first convergent of (69) gives
2
WP 14
X = = 70)
Rewriting the reduced susceptibility (66) in the complex form
Xn,st(@) = ! (@) — ixy o (@) (71)
the corresponding real and imaginary parts for the first convergent (70) are
2y (~0?+2y)
(1) —
Xr st (C!J') - wm_ _ 4(0,2}’ + wa + 4 y2 (72)
2y e
WP W) = z (73)

o -4y +o? +4y2
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Some particelar cases of relevance can be deduced from these results in & straightforward
fashion. Using &' = w/B and (43), equation (70) becomes

1
1)} —

Xese(@) = 7 F———y (74)
Using (59) and (74), we recover the result of Coffey and McGoldrick (equation (90) in [11a])
_ Ey (1 — w’1p/B) cos(wt) 4 wp sin(wt)

(Prleos BON = 7 (1 = aiun/BY + (o)’
which is derived from the modified Smoluchowski equation. For y <& 1, equation (74)
gives the Rocard formula {5, 8, 11, 12)

(75)

1
D (w) = . 76
%@ S T A Tl /0) (76)
In: the particular case when B — o0, we recover the Debye result [5,8,11,12]
Xea@) = lim x13(@) = . an

Figure 5 shows the steady-state responses x/ (') and x; (@) versus the reduced time
t'pw. The curves (NH), (D) and (MS) correspond respectively to (66), (70) and (77) for
y = 0.05 and the curve (NH1) to (66) for ¥ = 1. All the curves converge to zero as @
increases. Moreover, the inertial effects are pronounced for @ > t';’. Figure 6 illustrates
well how the inertial effects deviate the curves from the ideal case (D).

As the integral on the right-hand side of the system (62) is related to the susceptibility,
we can explicitly compute

( x! ) 2 (x4 gty o0) 42
= . (78)
1 s
X; — i (o~ @)) B

With these solutions, we are able to solve the systems (63) and (65). By inverting the
corresponding matrices, we isolate the terms ¥} and Y2 appearing on the left-hand side of

1 — Ll Loyl PR )

X ra (60 X (00
0.8

06

04

-0.4- T T MR
001 0.1 I 10 100

Figure 5. Normalized dispersion plots of the real and imaginary components, x," (@) and
Xz (), of the steady-state complex susceptibility versus the reduced time r'pw. Key as in

figure 2.
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X e )
Figure 6. Plots of the imaginary part . ..(e) versus the real part x; (@) of the steady-state
complex susceptibility, Key as in figure 3.

each system. Multiplying both sides by e™ and integrating over x, using (21), we obtain
linear equations for %(w’) and for ¢a(e’):

/ —1 oo ’ ‘\/é_;ﬂEO a 1
%(w)ugfo (1+8y ){(I—l-Zyx)[quo(w) 3 ﬁ(xa.;.]_x)xz]

+\/_x[\/_(a||—0u)E2 F”Eo(a—x—l)xl]
A TEyx \/_ “E“(—_.1)x2}dx (79)

(@) = [[(m’ + 1% + 2yx]

+00
sf (21w’+1)[(21w’+ 1)2 + 8yx]
[5¢z( - “/ZV”E"( o +1-x)xz}

kT
/6y (2ie +1)[,/ 2 ey - ou_) ‘/E‘Z’i"(aa —I)X}}
2 [ BE0 (B Ny
+v12yx T (Bx 1)X2}d.x. (80)

Computing ¢p{w’y and ¢o(e’) and using (60), we obtain the resuit
1

1 1
(1) = — [
Pa 15 [1 — gl;e”s”E: (gl-;)] 82y (1 - 24/2v7; I2

[(—1+2\/2yz;+4y)6"“”51( )+ (=16y/221y* + 3221y )" Ex (1)

+@By — 16122 y3’2)](«/_——ﬂ=xr (@ ))(”E")
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1 1 pEo\? E2
(-5 n @) () +@-eogt]

1 1 1
+_.
201 — g=(1 + 32262 E1 (22)) [Sﬁ(—ﬁ T )t

x[@ 22221 + 22 — 222762 E1(22) + (=2 E1z2 + 1) Exlzy)

#Ep
X, st{@ ))( xT )

+(-2 le2+222)](\/_—

1 Eo\? EZT) .,
t3 (1 — 2262 E1(22)) [(%:9) + (o) —e1) ﬁ] ]em‘” ¥ +cc (81)
where
(2iw' + 1)2
2 = T (82)

In the limit J — 0, that is when ¥ — 0 and B — co with the product yB =kT/{ = D
constant, the formula (81) gives the result obtained by Débiais from the Smoluchowski
equation [13], namely

L1 (BB - @*/6D%) (o — )
bull) = %[(1 ¥ (0/2DY) (1 + (@/3D)) " 1+ (w/3D)2]°°s(2°”)
1 [ (5)%(@/2D) + @/3D)) (@ — ai)é’;s(w/so)]sm o
(1+ (@/2D)?) (1 + (w/3D)?) 1+ (w/3D)?
(ebay? (@ — )
+30(1 + (w/2D)%) 30 ’ (83)

The ratios for the time-independent component and for the 2¢ frequency time-dependent
component, designated respectively by the superscripts 0 and 2, can formally be written in
the complex form

do(0’)

1Eal@) = T2 = AN (o) — i8N (@) (84)
An? (o) = ‘::2(—(“(;;) = An'2 (o) ~ iAn"} (@) (85)

However, the more relevant quantities from the physical point of view are An'y ("),
An’f’ (@) and An”fj «(@"); the imaginary part of An (&) being of virtual contribution
to the time-independent component (see equation (81)). Defining the parameter
(o — a kT

R= 2

(86)

we obtain
1 1

[1 - §~1;e‘/31’E|(§!~y-)] 2427 (1 - 242 /771

Anf_ 4@ =
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x [(-1 +2y2yz) +4y)e BV Ey (ﬁ) + (=16 V221 y*? + 3221y *)e" Er(21)

VT = 7 o, w(@) oy
14+R

+(8y — 16 2zly3’2)] (87)

3

An? (o) =
nst I~ Wiﬁ(l + 32262 E)(22))

« [ ((2 220 + 22— 2220eME | (z2) + (-2 &2z + 21 JeP Ei{z1)
8./22(— 22 + /21 )?

(=2 /7123 + 2 22) )JH - = kea@) ]

8VTa(—T + V21 iR Tl Ei) } @®8)

In the appendix, we show that approximate formulae for (81), (87) and (88), which are valid
when ¥ <« 1, give results analogous to those obtained by Coffey and McGoldrick [5,11]
in solving the modified Smoluchowski equation. We point out the misprint in the definition
of p in [11]. The correct expression of y should not contain the factor -’2-

Figures 7 and 8 show the influence of the inertial effects on the steady-state Kerr
functions (85).

5. Conclusion

The generalized Liouville equation in the presence of large collisions provides exact
analytical expressions of the dielectric and Kerr functions up to second order in the electric
field, for all values of the physical parameters involved. Moreover, the results of the Debye—
Smoluchowski and modified Smoluchowski models are recovered in the limit regime of very
high friction and very small inertia.

1
Any (), Anie(@) ]
08 7]
06 1

04

02 7]

04 e
001 01 1 10 o 100

Figure 7. Normalized dispersion plots of the real and imaginary components, Anj ,(«w) and
Anl(w), of the time-dependent 2w frequeacy term of the steady-state complex Kermr-effect
function versus the reduced time r'pw. Key as in figure 2. We take the value of the parameter
R=1.
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Figure 8. Plots of the imaginary part "3": (@) versus the real patt Anp . (w) of the time-
dependent 2w frequency term of the steady-state complex Kemr-effect function. Key as in
figure 3. We again take the value of the parameter R = 1,

Finally, graphs for small and high values of inertial moment show that the inertial
behaviour of the molecule is very apparent at high frequencies.

Appendix

We can evalvate the results (81), (87) and (88) approximately by postulating the following
formal solutions for the systems (62), (63) and (65) [5]:

x! 1% @i (@) LX)
( x} ) - ( S by (@) L) ) A1
(0N DRJeLix )

=] X2 d“(w’)mla}(x) (A2)

\ 1)\ TS ) s L)
(Y TRGem )
V2 = Z dz(w')mL,(x) (A3)

2 2 2
\ 2/ \ I ) rrbm e )
where the generalized Laguerre polynomials

ie d
m - 1+m -X
Li(x) = 7 "’dx-’( ) (Ad)
are introduced in series form where a}, b}, cj.’, d_?, b c}, d? and _r}z are the coefficients

depending on the frequency. These polynomials verify the relations

a 2
L7 () = L7* @) - L7 () (A6)

2
[xa—+(M+1 —x)—+1]L’"(x)— (A3)
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-’»‘L}"H(X) = +m+ DLP@) — 7+ DL, (x)
4 nt : 1
x-é;—x+m Lix)=(+1) ;+1(x)

a

(ﬁ - 1)L;"(x) =L (x),

(AT}

(A8)

(A9)

If we substitute the expressions (A1)-{A3) and use the relations (A6)-(A9) above, the first
and second equations of each system (62), (63) and (65) are expressed respectively in
terms of the Lf,.’(x)'s and the L} (x¥'s. The third equations of the systems (63) and (65)

are expressed in terms of L}(x)’s. Equating the coefficients of the various Laguerre

polynomials, we get the following recurrence formulae for these coefficients;

{ iw'ay + 2Zyby \ ( 0 \
—/2ya} + (e + 1)b} + /2yal — /2y ik
—V2jybl_; + (o' + Va) + /@j + 2)yb} - 0
~J @+ Dya} + o' + )b} +VCi + Dyal,, 0 )
\ J o\ -

Vord; }

( [—J67c3+d§,>+zJ;]rfg+¢67c$1 \ L lE2
[-V2G+Dvdla+ fa+V2rd] | | /TR
[~vBivd®, + < +/6G + Dyd!] L syl
[-VZiv i, = VEG T+ Dye) + 4
+ZGF DY £ +BG F Dve)] _ AT s 1

\ . ) 3 kT

(A10)

(Al1)
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{ [ﬁw’cﬁ-!-ﬁdg] \ \/_(a —os ) EE
ol - ekl
[~vBPei+ i+ 1)+ 2 F £ +o/B7E i
20 +1)y pE
[-vIoFvd ot i) | ARG (A12)
[~ o770+ TR — s
[~ 277 1~ EGFT -+ @it + )2
- 2 7 2
T £+ BT e | 2ithy uEo !

\ / -

Using (A2), (A3) combined with (58), we integrate (21} over x to give
uu(t) = 35(c3@) + chl@)e™™) +cC . (A13)

When we neglect the coefficients other than aj, b}, 3, 43, ¢2 and d2, we only have to
solve the first two equations of each system (A10), (All} and (Al2) to get approximate
expressions for ¢§ and ¢2. The relation (A13) then becomes

2 pE 3
O = 1 Y (IZ_TQ (g —a)@y o2 (B0)
(4wa—2imf—6y)(wﬂ—iw'—2y) Baw? —4iw' — 12y
2
HEy E3
() Sty | o (Al4)
3002 ~ 301w — 60y 60 '

This result is analogous to that obtained by Coffey and McGoldrick (equation {91) of [11])
from the modified Smoluchowski equation and to that obtained in a first approximation by
Hourkonnou and Navez [5]. The ratios for the component of frequency zero and 2" taken
separately in this approximation are

0(1) 14
2w = e = An(e!) ~ian2(w) (a15)
2(1) @
st = L) = a2 - i 2w, (A16)
We then get
' 2 -
AnYQ (o) = (_w’*’—ia};—ly +R) 1+ R)™! (A17)
and
6y? 3Ry -
163 PR _ 1
Anr,st(w)_((zw,g_iw;msy)(wm_iaf_zy) zwﬂ_iwf_3y)(l+R) .
(A18)

The corresponding real and imaginary parts are

2y (% =2
A% = (-. A i R) 1+ Ry (A19)

o ~ 4%y + 0% +4y°
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A 2y (A20)
Y (@ -4y + 0?4y 1+ R)
A1)
An'c'y
[ 6y 20" — 70"y — & +6)7)
136y + ot + 500 + 13077 ~ 280 — 160"y + T30y — 84073 + 40°

_ 3Ry (2&)&—31/)
40" - 120"y + 0 + 992

}(1 +Ry! (A21)

An"zﬂ)

r,5t
_ l: —6y% (~5y + 3(»’2)
- 369* + ™ + 50 + 1307y — 28wy — 160y + 1B oy? — 840?)° + 40°
+ 3Ryw
4 — 120%y + & +9y?

] {1+ R, (A22)
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