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I. Phys. A: Math. Gen. 27 (1994) 6657-5676. Rinted in the UK 

Dielectric properties of a linear rigid rotor in 3 ~ :  the case 
of large collisions 

P Navez and M N Hounkonnou 
Unit.! de Recherche en Physique Thecrique et MaWmatique, Institut de Mathematiques et de 
Sciences Physiques (IMSP). BP 613-Porto-Novo, Republic of Benin 

Received 4 May 1594. in final form 20 July 1994 

AbstracL Exact analytical expressions for the dielechic and. for the first time, for the Kerr 
functions a~ explicitly calculated in both relaxation and steady-state regimes, by solving the 
generalid Liouville equation (in the presence of large collisions) for the rotational motion of 
a linear rigid rotor in 3D. The response functions thus obtained generalire and extend all the 
results recently published on the topic. R e  Debye-Smoluchowski or Roc& diffusion models 
are recovered. In pdcular, the dieleckic response is in full agreement with the analysis of 
Sack (1957 Proc. Phys. Soc. B 70 402, 414). Nevertheless, we draw the reader's attention to 
the misprint in the susceptibility formula given by Sack in his equation (2.35). 

1. Introduction 

The dynamical dielectric relaxation and Kerr electric birefringence, considered here as 
dynamical properties of an intrinsically isotropic fluid, are of great interest in order to 
understand the microscopic behaviour of the polar molecules constituting this fluid. These 
properties are related to the rotational motion of the polar molecules under the action of an 
electric stress. 

The experimental dielectric properties of a fluid at time t can be determined by means of 
the after-effect function x ( t )  for the dielechic relaxation. This function measures the electric 
polarization of the fluid and depends directly on the orientation of the polar molecules with 
respect to the axes of polarization [1-6]. 

The Ken electric birefringence results from the anisotropy of the fluid induced by 
the electric field. The birefringence properties can be determined by means of the Kerr 
function @ ( I ) ,  which is related to the difference between the refractive indexes parallel 
and perpendicular to the axis of polarization. This function also depends directly on the 
preferential orientation of the polar molecules [ 1-61. 

In this paper, we present calculations of the functions ~ ( t )  and @ ( t )  in the case of a 
system of rigid linear polar molecules rotating about fixed centres and interacting with the 
surrounding via a mechanism of large collisions. The mechanism of large collisions means 
that in the process of interaction the orientations of the molecules remain unaffected, but 
the velocity distribution after impact is Maxwellian regardless of the initial velocity 111. 

It is also assumed that: 
(a) The collisions can bc treated as instantaneous compared with the time scale 

(b) There is no correlation between successive collisions. 
characterizing the evolution of the rotating molecules. 
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Finally, the rotating molecules possess a permanent and induced dipole moment along 
their axes, interacting with the elecfric field. Hyperpolarizabilities are ignored in the present 
case. 

The paper is organized as follows. Section 2 deals with general theoretical 
considerations. In section 3, we determine the relaxation of the functions x ( t )  and 4( t )  
generated by a sudden removal of a DC electric field, while in section 4 these functions are 
studied in the steady-state regime when a cosine alternating electric field is applied. We 
restrict our calculations up to second order in the electric field. 

2. General theoretical considerations 

The generalized Liouville equation (in the presence of large collisions) for the probability 
density function W ( a ,  j3, U,, ma, I)  in the configuration angular velocity space associated 
with the rotational motion of a linear rigid rotor can be written as [l-51 

Here a and g are, respectively, the azimuthal and polar angles of the molecule with respect 
to the fixed direction of an applied electric field along the polar axis. w, and wp are the 
corresponding angular velocities about any axis tbrough the origin perpendicular to the line 
of symmetry of the molecule. I is the moment of inertia of the rotor about the line of the 
principal axis through the origin perpendicular to the axis of symmetry. The moment of 
inertia about this principal axis of symmetry is assumed to be zero. B = </I is the mean 
collision rate, interpreted as the ratio of the friction coefficient < to the moment of inertia 
I, similar to the case of the Brownian motion 13-51. k is the Boltzmann constant, T the 
absolute temperature, and V the potential energy. 

Except for the time derivative term, the left-band side describes the free motion of the 
rotor and its interaction with the potential energy, while the right-hand side represents the 
influence of large collisions with the surroundings. 

Our aim is essentially to calculate the after-effect function, which amounts to calculating 
the autocorrelation function of the second-order Legendre polynomial Pz(cosp) = 
i (3  cos2 fi  - 1). The Kerr function may be calculated from the equation [ 3 6 ]  

The after-effect function for the dielectric relaxation is defined as [Id] 

In OUT analysis, we consider the potential energy L3-63 
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where E( t )  is the applied electric field, p is the permanent dipole moment along the rotor 
axis of symmetry, and a11 and a1 are the polarizabilities causing the induced moment of 
the molecule, respectively parallel and perpendicular to the axis of symmetry of the rotor. 

The solution of the generalized Liouville equation (1)  can be written [1-6] as 

1 +Z(x, t )  + X I @ ,  t)cosP + X&, t) 
I w=- 

8a2kT 

where 

and 
P. (cos B )  = 3 sin fl  cos P . (COS~)  = 3 sin' p (7) 

are the associated second-order Legendre polynomials. To compute ~ ( t )  and # ( t )  up to 
second order in the electric field, we assume that XI ( x ,  t )  and X'(x, t )  depend only linearly 
on E ( t )  and that Y , ( x ,  t ) .  Y&, t ) ,  Y3(x, f) and Z(x,  t )  depend only quadratically on EO). 
On substituting (5) in equation (1) together with (4), and equating the coefficients of the 
various Legendre functions to first and second order in the elecmc field, we note that, up 
to second order, we obtain the foUowing matrix systems: 

=I- D X = T  (8) 

DzZ = Vx (10) 
g,x = Ex (9) 

where 

x=( ;;) 
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The dimensionless parameter y is 
kT 

y = -  
I B Z '  

Using (5). we can perform the integrals in (3) and (2) to give 

Thus, the evolution of x ( i )  and + ( t )  will be completely determined provided that the initial 
condition for W and the explicit expression of E ( t )  are given. 

3. Dielectric and Kerr relaxation functions 

We consider an electric field defined as 
Eo t s o  

E(t) = 

where EO is a constant field. For t 0, we consider that the system is in equilibrium. The 
distribution function, when we take into account second-order terms in the electric field, is 
then 

) [ 1 + g cos j3 + (q - a1 + 
kT 3kT 1 

(23) 

I I(@: + w p  
exp(- 2kT 

W = -  
8n2kT 

The corresponding values for the coefficients at t < 0 are 

(24) 
d o  XI ( x ,  t < 0) = - kT 

and 

Y l ( x , z c O ) =  

For t 0, we apply to the above matrix equations Laplace transforms defined by 
tm 

f(s) = L ( f ( t ) )  = / dte-*'f(t). 
0 
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Taking account of the initial conditions and of (22), and defining the new dimensionless 
Laplace variable 

, s  
B 

s = -  

we obtain the two independent systems 

In what follows, all quantities having the superscript ' are functions dependent on x'. 

3. I .  Dielectric rebation function 

We can eliminate 2 2  in the system (28) to have an equation in .%I only 

Solving the last expression in fl and multiplying both sides by e-X', we integrate over x 
to give 

Carrying out the integral over x on the right-hand side of (31) and using (20). we get 

where we used the exponential integral defined [7] as 

Thus, we obtain 
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By using the identity 171 

ezEl ( 2 )  = 
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1 
1 

1 Z +  

2 1 +  

2 z +  

3 
3 

I t -  
Z + . . .  

I +  
Z +  

we can also express the result (34) in an appropriate continued fraction form 

(351 

- I &  

2Y (36) E 31T f ( s ' )  = 

2Y 
SI + 

4Y 
s'+ 1 + 

4Y 
S ' + l +  

6~ 
s ' + 1 +  

6Y 
S ' f l t  

$ '+I  + s'+ * + .. . 
The inverse Laplace transform of (36) is, up to fourth order in the y expansion, 

x ( t )  = [ 1 + [ -2e-(E') + 2 - 2 ( E t )  y 
3kT 1 

r 

4 ( ~ 2 ) ~  

3 
4 (E t )*  - 40edE') - 8 ( E t )  - - - 32(Bt)e-(B') 

16 (Et)3e-(Et)]y3 
3 

-16 (Bt)2e-(B" - (Bt)4e-'E') $. 40 - 

8 ( E t ) 3  
3 

+ 160 (Et)*e-@') - ~ - 224 2 (Et)' +- 3 

+ 1 4 y 4  (Bt)*e-(")] 
38 (Et)'e-@'') 13 (Et)6e-'B') 

15 + 45 

+O(Y5)). (37) 

Figure 1 shows the after-effect function for the dielectric relaxation x(r) /x(O)  versus the 
reduced time T = Et  for various terms of the expansion in power of y. It indicates that a 
suitable estimation of x ( T ) ,  correct for short time, has to contain at least the term y 3 .  

We note. that the first convergent of the continued fraction (36) leads to the same result as 
the dielectric response deduced from the Fokker-Planck-Kramers (FPK) equation describing 
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0 2 4 6 8 10 r I2 

Figure 1. Tune evolution of Ihe normalized aftereffect function for the dielecnic relaxation 
,y(r)/x(O) for y = 0.05 versus the reduced time I = B f .  The numbers (I) ,  (Z), (3) and (4) 
represent the degree of the polynomial expansion in y taken into accouni for the expression of 
x w .  

the Brownian rotational motion of a rigid linear rod, when a Dc field is removed [5,63. 
Indeed, defining the reduced susceptibility 

we recover for the first convergent of (36) the result recently deduced in [5,6], namely 

The superscript (1) stands for the order of convergece. The larger convergents of (36) give 
different responses compared with the FPK solution [5,6]. Replacing s' by io', we can split 
(34) into its real and imaginary parts 

x&') = xW) - ix:(o? (40) 
corresponding to the usual susceptibility and the loss factor, respectively. This gives for 
the first convergent 

For I -+ 0 (corresponding to E + co), since the Debye relaxation time 

1 t q)=-=- 
2 y B  2kT 

is finite, the first convergent (39) gives 

(43) 

(44) 

when we retake the usual Laplace variable s. The relation (44) corresponds to the Debye- 
Smoluchowski approximation; that is, the limit of the inertial response for very high friction 

1 pes, = lim x;"(s) = - 
E+- 1 + s?D 
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1.2 -t 

Figure 2. Normalized dispersion plots of the real and imaginary components of the complex 
susceptibility, x:(o) and x:(o), versus lhe reduced time r'go for y = 0.05 obtained from 
equation (l), 0. and the modhied Smoluchowski equation, (MS), and for y = 1 obtained 
from equation (I), N I ) .  0) refers to the case of the DebyeAmoluchowski dispersion. 

0.8.1 ' ' ' ' ' ' " ' ' ' " ' " ' " " ' ' 1 0.8 

0.7 

0.6 

05 

0.4 

0.3 

0.7 

0. I 
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Figure 3. Plots of the imaginary pa~I  $(m) versus the real part $CO) of the complex 
susceptibility for y = 0.OSobtained fmm equation (1) 0 and the modified Smoluchowsld 
equation (MS), and for y = 1 obtained from equation (1) NI). (D) refers M the Debye- 
Smoluchowski spect". 

and vanishingly small inertia The Debydmoluchowski approximation is better known in 
the harmonic form 181, i.e. putting s = io 
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This result can be compared with the case of spherical molecules with their polar axis 
rotating in one plane [8] 

Note that the first convergent susceptibility components (equations (41) and (42)) are nothing 
but the responses given by the modified Smoluchowski equation [4,9,10]. 

Figure 2 shows how the modified Smoluchowski equation, represented by (MS), versus 
the reduced time T‘DO (Z‘D = 2 5 ~  = </kT) overestimates the inertial effects, compared 
with the more appropriate generalized Liouville equation (1). Indeed, for vanishing inertial 
moment ( y  - 0.05). the spectrum given by the exact solution (equation (34)), represented 
by (NH) in figure 2 coincides with the ideal DebyeAmoluchowsk spectrum (D). For higher 
values of the inertial moment ( y  - l), the exact solution represented by (NH1) shows a 
very significant discrepancy with the DebyeSmoluchowski spectrum. 

Figure 3 illustrates the Cole-Cole diagram x?(o) = f(&’(o)) compared with the 
equivalent Debye one. For small y values, all the plots (MS), @) and (NH) have the same 
trend, while for y = 1 the plot (NHl) has a quite different form. 

3.2. Kerr relaxation function 

To calculate &s’), similarly to the previous subsection, we take the inverse of the square 
matrix defined in (29). This allows FI appearing in the left-hand side of (29) to be expressed 
as 

[(s’ + I)? i 2 y x l  [J;O+OO e-x’Fi dr‘ i i (q - 011 + 2 9 

8 y [ s ’ + l ] [ Y + x ]  
Yl = 4 3q (47) 

Multiplying (47) by e-x and taking the integral of the result over x with (21), we obtain 

&St) = 
46’ + 1) 

or in a more appropriate form 

[ 1 + 3 + e x ~  8y I (  0‘ 8y ) ] i ( q - w + g ) &  

id0111 - + g)&$ 

&‘) = 
4(s’ + 1) - [l + 3 9 e x p  F E ,  U!,!! ( 8Y >I 

By using (35). this result can also be expressed as a continued fraction 
1 

6~ 
.$(SI) = 

8Y 
S‘ + 

1 6 ~  
s ’ + l i -  2y + 

16Y 
s’+l s ’ + l +  

2 4 ~  
s’+1+ 

24Y 
s ‘ + 1 +  

s’ + + s’ + 1 + . . . 

(49) 
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The inverse Laplace transform of (50), valid for short time, is, up to fourth order of the 
y expansion, 

# ( t )  = (q - a1 + 2)*(1+ kT 15kT [-6e-@') - 6 ( B r )  + 6]y  

+[30(Bt)Ze-(B') -72- 12(Bt) + 18(Bt )2+84(Bt )e - (B ' )+72e- (Bf ) ]y2  

+[-36(Bt)' - 1080(Bt)2e-("' -36(Br)3 + 1800 -2016(Bt)e-(") 

-336(Bt)3e-(B') - 57 (Bt)4e-(B') + 216(Bt) - 1800e-(B')]y3 

+ 85536 (Br)enCB') + 43920 (Bt)ze-'B') + 54 (B t )4  - 2880(Bt) 

+216(Bt)3 + 82656e-"') + 14712(Bt)3e-(B') + 3510(Br)4ee"CB') 

[ 

- 82656 + 288 (Bt)' y4 1 2994 (Bt)5e-(B') 319(Bt)6e-(B') + 5 5 
+ 

The first convergent of the continued ftaction (50) now gives 
1 - B (an --cu.L + g) 7% 

r p ( S ' )  7 

6~ 
2Y S ' + l + - -  

s' + 1 

s' + 

Defining 

where 

we have 
1 
6~ 

s '+l+- 

An:')(s') = 

2Y 
s'+ 1 

s' + 

(53) 

(54) 

Replacing s' by io', we can split (53) into its real and imaginary parts as 

(56) 
Figure 4 shows An',(@') versus the reduced frequency a' for the exact solution (NH), the 
Debye-Smoluchowski case @) and the approximate response deduced by Kalmykov and 
Quinn (KQ) (and denoted by et)(@') in their work) [6]. 

Putting the term 2y/(s'+2) = 0 and s' = i d  in (55), we recover the result of Kalmykov 
and @inn (equation (76) in [6]) and the characteristic time ty,~ = e f ) ( O ) / B  = s0/3, 
(ef)(d) being the notation adopted in [a]). 

An,(@') = An'&') - iAn",(o'). 
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Figure 4. Plots of the real paas An&') of 
the complex Kemeffecl relaxation function 
for y = 0.05 obtained f" equation (1) 

I 0 and from the work of Kalmykov and 
Q U ~ M  (KQ) . Note that as 0' increases, all 
approximations converge rapidly, except for zu 0 0 0.2 0.4 0.6 0.8 I 1.2 1.4 1.6 the referredtoas(D)onthegraph. DebyeSmoluchowski diffusion model 

4. Steady state of the dielectric and Kerr function for E(t) = &cos (ut) 

The formal solutions for the coefficients can be written as 

(58) 

Under these conditions, the response functions take the form 

xst(t) = ~xsl(w)ei"' + cc 
&st(t) = +(@do) + h(o)e'") + CC . 

(59) 

(60) 
The subscript 'st' stands for the steady state. Replacing the expressions (57) and (58) into 
the two systems (8) and (9) and using the new dimensionless variable 

o ' = o j B  (61) 
we get the algebraic system of equations 



(65) 

(66) 

~ ~ m e - x ' y ' f d x ' - + + [ x & + ~  -.]xi 
-)@(a,, - a& +)@g ($ - 1) xt 

&+ (t - 1) x: 
Following the procedure developed for the dielectric relaxation, we solve the system 

(62) to recover the formula of the linear reduced susceptibility, namely 
, xlt(o') (1 + io 'N - zle"El(zd) - 

XdO) (1 +io') - zlezi El(zl) xr, a(w ) = 

where 

~~ (67) 
@'Eo x s m  = 3kT 

and 

(68) .,..I (1 + io')2 
2Y ' 

z1 = 

We draw the reader's attention to the misprint in the analogous formula given by Sack in [ 11 
(his equation (2.35)). The exact formula was also pointed out in an earlier work by Gaiduk 
and Kalmykov [2]. 

Using (35), we can rewrite the reduced steady-state susceptibility in a continued fraction 
as 

io' 
2Y xr, St(") = 1 - 

2Y 
io' + 

4Y 
iw' + 1 + 

4Y 
io' + 1 + 

6~ 
io' + 1 + 

6Y 
io' + 1 + 

io' + + io'+ 1 + . . . 
(69) 

which is the same as the result obtained by Sack 111. The first convergent of (69) gives 

Rewriting the reduced susceptibility (66) in the complex form 

xr .S f (4  = x:.,~U) - ix:l&') (71) 
the corresponding real and imaginary parts for the first convergent (70) are 
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Some particular cases of relevance can be deduced from these results in a straightforward 
fashion. Using U' = w / B  and (43), equation (70) becomes 

Using (59) and (74), we recover the result of Coffey and McGoldrick (equation (90) in [ 1 la]) 

which is derived from the modified Smoluchowski equation. For y << 1 ,  equation (74) 
gives the Rocard formula [5.8.11,12] 

In the particular case when B -+ CO. we recover the Debye result [5,8,11,12] 

Figure 5 shows the steady-state responses ~ i , ~ ~ ( w ' )  and x,Vst(w') versus the reduced time 
Z'Dw. The curves (NH), (D) and (MS) correspond respectively to (66). (70) and (77) for 
y = 0.05 and the curve @Wl) to (66) for y = 1. All the curves converge to zero as w 
increases. Moreover, the inertial effects are pronounced for w t r';'. Figure 6 illustrates 
well how the inertial effects deviate the curves from the ideal case (D). 

As the integral on the right-hand side of the system (62) is related to the susceptibility, 
we can explicitly compute 

With these solutions, we are able to solve the systems (63) and (65). By inverting the 
corresponding matrices, we isolate the terms Yp and Y: appearing on the left-hand side of 

1 

x ;,,,Cw). x ;,,W 
0.8 

0.6 

0.4 

0.2 

0 

62 

0.4 

0.01 0.1 1 10 1W 
7 3  

Figure S. Normalized dispersion plots of the real and imaginary components, &&o) and 
xla(o), of the steady-slate complex susceptibility versus the reduced time r'go. Key as in 
figure 2. 
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F w e  6. Plots of Ihe imaginary pm xc.(m) versus the rcal pM &(U) of the steadystate 
complex susceptibility. Key as in figure 3. 

each system. Multiplying both sides by e-’ and integrating over x ,  using (21), we obtain 
linear equations for 4(0’) and for 440’): 

(79) 
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where 
(2iw' + 

8Y 
22 = 

In the limit I + 0, that is when y + 0 and B + CO with the product yB = k T / <  = D 
constant, the formula (81) gives the result obtained by Dkbiais from the Smoluchowski 
equation 1131, namely 

The ratios for the timeindependent component and for the 2w frequency timedependent 
component, designated respectively by the superscripts 0 and 2, can formally be written in 
the complex form 

However, the more relevant quantities from the physical point of view are An'&&u'), 
being of virtual contribution 

to the timeindependent component (see quation (81)). Defining the parameter 
and An":&)'); the imaginary part of 

(86) 
(all - U d k T  

P2 
R =  

we obtain 
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In the appendix, we show that approximate formulae for @I), (87) and (88), which are valid 
when y << 1, give results analogous to those obtained by Coffey and McGoldrick [S, 111 
in solving the modified Smoluchowski equation. We point out the misprint in the definition 
of y in [ I l l .  The correct expression of y should not contain the factor 4. 

Figures 7 and 8 show the influence of the inertial effects on the steady-state Kerr 
functions (85). 

5. Conclusion 

The generalized Liouville equation in the presence of large collisions provides exact 
analytical expressions of the dielectric and Kerr functions up to second order in the electric 
field, for all values of the physical parameters involved. Moreover, the results of the Debye- 
Smoluchowski and modified Smoluchowski models are recovered in the limit regime of very 
high friction and very small inertia. 

0.01 0. I I 10 rbw IM) 

Figure 7. Normalized dispeIxion plots of Ihe real and imaginary components, An;,&) and 
An:,(o), of the One-depndent 2w frequency term of the steady-state complex Keneffect 
function versus the reduced time T'DO. Key as in hgure 2. We take the value of Ihe parameter 
R = l .  
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4.4 4.2 0 0.2 0.4 0.6 0.8 I 1.2 

A G h  
Figure S. Plots of the imaginary part A&@) verslls the real pari An;,,(") of the time- 
dependent 20 frequency term of the steady-state complex Km-effect function. Key as in 
figure 3. We again take the value of lhe parameter R = 1. 

FmaUy, graphs for small and high values of inertial moment show that the inertial 
behaviour of the molecule is very apparent at high frequencies. 

Appendix 

We can evaluate the results (81). (87) and (88) approximately by postulating the following 
formal solutions for the systems (62). (63) and (65) 151: 

are introduced in series form where a,!, bj, c!, 4, fp. cj'. d! and 
depending on the frequency. These polynomials verify the relations 

are the coefficients 



If we substitute the expressions (AlHA3) and use the relations (A6)-(A9) above, the first 
and second equations of each system (62), (63) and (65) are expressed respectively in 
terms of the Lg(x)’s  and the L; (x)’s .  The thud equations of the systems (63) and (65) 
are expressed in terms of L;(x)’s. Equating the coefficients of the various Laguerre 
polynomials, we get the following recurrence formulae for these coefficients: 

/ io's; + f i b :  

-&a: + (io’ + 1)bA + &ai 
... 

- f i b ; - ]  + ( i d  + 1)u; + d-bj 

-4-a; + (io’ + 1)b; + 
... 

\ 

0 

- J F Q  
... 
0 

0 =I ... 

.. 
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0 

... 

... 
Using (M), (A3) combined with (58), we integrate (21) over n to give 

At(t) = &(ct(o) t c,2(o)eZwr) + CC . 
When we neglect the coefficients other than ai, b& CO", d:, CO" and d i ,  we only have to 
solve the first two equations of each system (AIO), (All)  and (A12) to get approximate 
expressions for CO" and ci. The relation (A13) then becomes 

(all -a& t cc 60 
- 

30&-3Oio'-60y 
This result is analogous to that obtained by Coffey and McGoldrick (equation (91) of 1111) 
from the modified Smoluchowski equation and to that obtained in a first approximation by 
Hounkonnou and Navez [5 ] .  The ratios for the component of frequency zero and 20' taken 
separately in this approximation are 

We then get 

and 

(A181 
The corresponding real and imaginary parts are 
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6 y 2  (20" - 7wny -on + 6 y 2 )  

[36y4  + of4 + 5wm + 1 3 0 n y 2  - 280"y - 1 6 0 ' ~ ~  + 73wf4y2 - 840Ry3 + 4 &  

- 3 R y  ( 2 d - 3 ~ )  
40'4 - 120fly + on t 9 y 

] (1 + R)-l 
3 R y o '  

t 
4 d 4 -  1 2 o n y + o a + g y 2  
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